Lobitzzz blog... Lobitzzz blog...Lobitzzz Lobitzzz blog...Lobitzzz blog... Lobitzzz blog...Lobitzzz Lobitzzz blog...

ako ito...

My photo
Ako nga pala si Lobitz, sa Pisay nag-aaral at mahilig ako sa mga kinahihiligan ko... gusto ko ng mga gusto ko.. at natatawa ako sa mga nakakatawang bagay.. at ayaw ko sa mga kinaiinisan ko... yun lang

downloaddownloaddownload

Wednesday, October 22, 2008

proof of the Heron's formula

kailangan niyo ba ng proof para sa heron's formula para sa homework natin sa math?? eto yung nahanap ko na madaling maintindihan.... hahahaha, wala lang uli...

Proof of the heron's formula

A modern proof, which uses algebra and trigonometry and is quite unlike the one provided by Heron, follows. Let a, b, c be the sides of the triangle and A, B, C the angles opposite those sides. We have

\cos(C) = \frac{a^2+b^2-c^2}{2ab}

by the law of cosinesFrom this we get the algebraic statement:

\sin(C) = \sqrt{1-\cos^2(C)} = \frac{\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2 }}{2ab}.

The altitude of the triangle on base a has length b sin(C), and it follows

\begin{align} A & = \frac{1}{2} (\mbox{base}) (\mbox{altitude}) \\ & = \frac{1}{2} ab\sin(C) \\ & = \frac{1}{4}\sqrt{4a^2 b^2 -(a^2 +b^2 -c^2)^2} \\ & = \frac{1}{4}\sqrt{(2a b -(a^2 +b^2 -c^2))(2a b +(a^2 +b^2 -c^2))} \\ & = \frac{1}{4}\sqrt{(c^2 -(a -b)^2)((a +b)^2 -c^2)} \\ & = \frac{1}{4}\sqrt{(c -(a -b))((c +(a -b))((a +b) -c))((a +b) +c)} \\ & = \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}. \end{align}

The difference of two squares factorization was used in two different steps.

No comments: